BY CONTINUING TO USE THIS SITE, YOU ARE AGREEING TO OUR USE OF COOKIES. REVIEW OUR PRIVACY & COOKIE NOTICE
X
HOME > OUR THINKING > Capital Markets > RESEARCH

Natural Language Processing, Part I: Primer

 Unveiling The Hidden Information In Earnings Calls

Given the growing interest in NLP among investors, we are publishing this primer to demystify many aspects of NLP and provide three illustrations, with accompanying Python code, of how NLP can be used to quantify the sentiment of earnings calls. In our first example, sector-level sentiment trends are generated providing insights around inflection points and accelerations. The other two illustrations are: i) stock-level sentiment changes and forward returns, and ii) language complexity of earnings calls.

  • What is NLP? – We demystify common NLP terms and provide an overview of general steps in NLP.
    Learn More About Data
  • Why is NLP important? – Forty zettabytes (10^21 bytes) of data are projected to be on the internet by 2020, out of which more than eighty percent of the data are unstructured in nature, requiring NLP to process and understand.
  • How can NLP help me? – We derive insights from earnings call transcripts via NLP measuring industry-level sentiment trends or language complexity of earnings calls, and much more.
  • Where do I start? – Code for each use case is enclosed, enabling users to replicate the sentiment analysis.

DOWNLOAD FULL REPORT

Oct 10, 2017
Blog
Aug 01, 2017
Quantamental
Research